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Abstract The edit distance is a very simple and natural metric on the space of
graphs. In the edit distance problem, we fix a hereditary property of graphs and
compute the asymptotically largest edit distance of a graph from the property. This
quantity is very difficult to compute directly but in many cases, it can be derived as
the maximum of the edit distance function. Szemerédi’s regularity lemma, strongly-
regular graphs, constructions related to the Zarankiewicz problem – all these play a
role in the computing of edit distance functions. The most powerful tool is derived
from symmetrization, which we use to optimize quadratic programs that define the
edit distance function. In this paper, we describe some of the most common tools
used for computing the edit distance function, summarize the major current results,
outline generalizations to other combinatorial structures, and pose some open prob-
lems.

1 Introduction

The edit distance in graphs was originally studied to answer two different and in-
dependent problems: one to answer questions on property-testing [7] and the other,
to answer a question regarding consensus trees from evolutionary biology [8]. In
metabolic networks, the presence or absence of edges in a certain graph correspond
to pairs of genes which activate or deactivate one another. In evolutionary theory,
avoiding forbidden induced subgraphs [23] is studied, which is equivalent to a simi-
lar edit problem of bipartite graphs or matrices. Edit distance problems with respect
to more general classes of graphs are important in the algorithmic aspects of prop-
erty testing [4, 5, 3, 7] and in the techniques involved in computing the speed of
dense graph properties [46, 19].
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The (normalized) edit metric is a metric on the set of simple, labeled n-vertex
graphs. The distance between two graphs is the symmetric difference of the edge
sets divided by the total number of possible edges. If dist(G,G′) denotes the edit
distance between G and G′ on the same labeled vertex set, then

dist(G,G′) = |E(G)4E(G′)|/
(n

2

)
.

As with any metric, we may take a property of graphs H (that is, a set of graphs),
and compute the distance of a graph from that property:

dist(G,H ) = min
{

dist(G,G′) : V (G′) =V (G)
}
. (1)

The properties that we study in this paper are hereditary properties. A property
of graphs is hereditary if is closed under isomorphism and deletion of vertices. Alon
and Stav [7] suggest that “In fact, almost all interesting graph properties are hered-
itary.” Planarity, having chromatic number at most k or not having a given H as an
induced subgraph all are commonly-studied hereditary properties. The property of
having no graph H as an induced subgraph is called a principal hereditary property
and we denote it by Forb(H). For every hereditary property H there exists a family
of graphs F (H ) (“forbidden graphs”) such that H =

⋂
H∈F (H) Forb(H). A hered-

itary property is said to be nontrivial if there is an infinite sequence of graphs that
are in the property.

In the seminal papers by Alon and Stav [6, 7] and by Axenovich, Kézdy and
Martin [8], the fundamental question was the maximum distance of a graph G on n
vertices from hereditary property H . In fact, the maximum distance is asymptoti-
cally the same as that of the Erdős-Rényi random graph G(n, p), for some value of
p.

Theorem 1 (Alon-Stav [7]) Let H be an arbitrary graph property. There exists
p∗ = p∗H ∈ [0,1] such that

max{dist(G,H ) : |V (G)|= n}= E[dist(G(n, p∗),H )]+o(1). (2)

We denote the limit of the quantity in (2) by d∗H . This is, asymptotically, the
maximum distance of a graph from H . Although d∗H is the quantity in which we
are most interested, determining its value is most often done by generalizing the
result in Theorem 1. We do so by instead finding the maximum edit distance of a
density-p graph from H , for all values of p.

Balogh and Martin [16] introduced the edit distance function of a hereditary
property.

Definition 2 Let H be a nontrivial hereditary property of graphs. The edit distance
function of H is

edH (p) := lim
n→∞

max
{

dist(G,H ) : |V (G)|= n, |E(G)|=
⌊

p
(n

2

)⌋}
. (3)
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The existence of the limit in (3) was proven in [16].1

Theorem 3 (Balogh-Martin [16]) Let H be an arbitrary nontrivial graph prop-
erty. Then

edH (p) = lim
n→∞

E[dist(G(n, p),H )].

Theorems 1 and 3 make use of Szemerédi’s regularity lemma [48] but in a way
that detects induced subgraphs. The idea of applying Szemerédi’s regularity lemma
to hereditary properties has been studied in a number of contexts, including pio-
neering work by Prömel and Steger [40, 41, 42], Scheinerman and Zito [46], and
Bollobás and Thomason [18, 19, 20]. The essential technique is to apply the regu-
larity lemma twice – once to the graph itself and a second time to each of the graphs
induced by the non-exceptional clusters. More directly, one can use a variant of Sze-
merédi’s regularity lemma due to Alon, et al. [5] that has been used in a number of
papers, including the edit distance papers [7, 16].

The edit distance function is symmetric with respect to complementation. It is
easy to see that edForb(H)(p) = edForb(H)(1− p) and, in fact, a general case is true.

Proposition 4 Let H =
⋂

H∈F (H ) Forb(H) be a nontrivial hereditary property and
let H ∗ =

⋂
H∈F (H ) Forb(H). Then edH (p) = edH ∗(1− p).

A very similar setting to the edit distance problem was studied by Richer [43]
and as further investigated byMarchant and Thomason [31, 32] regarding the two-
coloring of the edges of the complete graph. Many of the most vital results for solv-
ing the edit distance problem come from this setting. In solving the problems they
pose on a hereditary property H , they obtain the function 1− edH (p). The con-
nection between the two settings is addressed in [31] as well as by Thomason [49]
in a survey.

2 Colored regularity graphs

The key observation in computing the edit distance is that a graph can be approx-
imated by a graph-like structure in which the clusters either behave like cliques or
independent sets and the ε-regular pairs either behave like complete bipartite graphs,
empty bipartite graphs or random graphs with density bounded away from both 0
and 1.

Alon and Stav [7] defined a colored regularity graph (CRG) K to be a simple
complete graph, together with a partition of the vertices into white and black V (K)=

1 It should be noted that early papers on the edit distance do not normalize the distance. That is,
the distance is merely |E(G)4E(G′)|. Normalization, however, is required in order to define the
edit distance function and it seems most natural to put the normalization in the metric itself, rather
than doing so in order to define edH .
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VW(K)∪VB(K) and a partition of the edges into white, gray and black, E(K) =
EW(K)∪EG(K)∪EB(K).2

We say that a graph H embeds in K, writing H 7→ K, if there is a function ϕ :
V (H)→V (K) so that the following occurs:

• If h1h2 ∈ E(H), then either ϕ(h1) = ϕ(h2) ∈VB(K) or ϕ(h1)ϕ(h2) ∈ EB(K)∪
EG(K).

• If h1h2 6∈E(H), then either ϕ(h1)=ϕ(h2)∈VW(K) or ϕ(h1)ϕ(h2)∈EW(K)∪
EG(K).

A CRG K′ is said to be a sub-CRG of K if K′ can be obtained by deleting vertices
of K and is a proper sub-CRG if K′ 6= K.

If a graph H embeds in CRG K then a large enough graph that is approximated
by K will have an induced copy of H. This is stated and proven more formally in
Section 4 of [16]. However, the main idea is that for any large graph in a hereditary
property H =

⋂
H∈F (H ) Forb(H), the CRG K that approximates the graph satisfies

the property that H 67→ K for all H ∈F (H ). We denote K (H ) to be the subset of
CRGs K such that no forbidden graph maps into K. Formally, K (H ) = {K : H 67→
K,∀H ∈F (H )}.

2.1 The f and g functions

There is a matrix associated with a CRG called MK(p) that plays a role similar to
the role the adjacency matrix does for graphs. We can use this matrix to help define
the functions fK and gK , that are essential for understanding edit distance.

Definition 5 Let K be a CRG on vertex set {v1, . . . ,vk} with VW and VB denoting
the white and black vertices, respectively, and EW, EG and EB denoting the white,
gray and black edges, respectively. Let MK(p) denote the matrix with entries defined
as follows:

mK(p)i j =


p, if i 6= j and viv j ∈ EW or i = j and vi ∈ VW;
0, if i 6= j and viv j ∈ EG;
1− p, if i 6= j and viv j ∈ EB or i = j and vi ∈ VB.

(4)

The functions fK and gK are defined as follows:

fK(p) =
1
k2 [p(|VW|+2|EW|)+(1− p)(|VB|+2|EB|)] = 1

k2 1T MK(p)1 (5)

gK(p) = min
{

xT MK(p)x : xT 1 = 1,x≥ 0
}
. (6)

The vector 0 is the all-zeroes vector, 1 is the all-ones vector, and vector inequalities
are coordinatewise.
2 Papers by Bollobás and Thomason [18, 19, 20] and others such as [49] use the term “type” rather
than CRG.
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Clearly, for any CRG K and any p ∈ [0,1], we have gK(p) ≤ fK(p). Although
the linearity of fK makes proving general results about edH possible, the g function
is more useful in computing the edit distance function. In fact, if an optimal vector
of (6) has a zero entry, we may obtain K′ by deleting the corresponding entry and
achieve gK′(p) = gK(p). We say that a CRG, K is p-core if, for any proper sub-CRG
K′ of K, we have gK′(p)> gK(p).

The edit distance function can be defined in terms of the f and g functions:

Theorem 6 Let H be a nontrivial hereditary property. For any p ∈ [0,1],

edH (p) = inf{ fK(p) : K ∈K (H )}= inf{gK(p) : K ∈K (H )} (7)
= min{gK(p) : K ∈K (H )} . (8)

Equation (7) is due to Balogh and Martin [16]. Equation (8) is from the results
of Marchant and Thomason [31] and gives rise to the question as to whether only
a finite set of p-core CRGs is sufficient to define the edit distance function for any
nontrivial hereditary property and all p ∈ [0,1].

There is some evidence (see Theorem 31(d) and Theorem 30(b) below) that for
some hereditary properties, determining the edit distance function requires knowl-
edge of an infinite sequence of CRGs. Nonetheless, we believe that the bulk of the
edit distance function can be determined from a finite number of CRGs. That is, for
any ε > 0, we believe a finite set of CRGs can simultaneously define edH for all
p ∈ [ε,1− ε]. This is Conjecture 1 in Section 8.2.

2.2 Clique spectrum

Certain colored regularity graphs play a key role in the computation of the edit
distance. A gray-edge CRG is the CRG, K with all

(|V (K)|
2

)
edges gray. The gray-

edge CRG with r white vertices and s black vertices is denoted K(r,s). The clique
spectrum of H is the set

Γ (H )
def
= {(r,s) : H 67→ K(r,s),∀H ∈F (H )} .

For example, if H = Forb(H) is a hereditary property, then pairs (r,s) are in the
clique spectrum of Forb(H) if and only if H cannot be partitioned into r indepen-
dent sets and s cliques.

The clique spectrum has a number of useful properties. For example, it is
monotone in the sense that if (r,s) ∈ Γ (H ) and 0 ≤ r′ ≤ r and 0 ≤ s′ ≤ s, then
(r′,s′) ∈ Γ (H ). As a result, the clique spectrum of a hereditary property can be
expressed as a Ferrers diagram. An extreme point of the clique spectrum Γ is a pair
(r,s) ∈ Γ for which both (r+1,s) 6∈ Γ and (r,s+1) 6∈ Γ . Figure 1 shows the graph
H9, and Figure 2 shows its clique spectrum, expressed as a Ferrers diagram.

Since the matrix MK(r,s)(p) is a diagonal matrix with r entries of value p and s
entries with value 1− p, it is easy to compute that for all p ∈ (0,1)
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Fig. 1 A graph H9 on 9 vertices.

(1,1)

(3,0)

(0,2) 

Fig. 2 The Ferrers diagram of the clique
spectrum of H9 with the extreme points la-
beled.

gK(r,s)(p) =
(

r
p
+

s
1− p

)−1

=
p(1− p)

r(1− p)+ sp
. (9)

We have the natural convention that if r = 0 then gK(r,s)(0) = 1 and if s = 0 then
gK(r,s)(1) = 1.

In fact, we have a more general way of computing the edit distance function if
the matrix MK(p) is block diagonal matrix, where the blocks correspond to a CRG
notion of components.

Definition 7 A sub-CRG, K′, of a CRG K is a component if it is maximal with
respect to the property that, for all v,w ∈ V (K′), there exists a path consisting of
white and black edges entirely within K′.

More simply, components of K are the components of the graph G with vertex set
V (K) and the nonedges of G the gray edges of K. This leads to the generalization of
(9).

Proposition 8 (Martin [33]) Let K be a CRG with components K(1), . . . ,K(`). Then

(gK(p))−1 =
`

∑
i=1

(gK(i)(p))−1

2.3 Characterization of p-core CRGs

Marchant and Thomason [31] gave a characterization of all p-core CRGs.

Theorem 9 (Marchant-Thomason [31]) Let K be a p-core CRG.

(a) If p ≤ 1/2 then there are no black edges and the white edges are only incident
to black vertices.

(b) If p ≥ 1/2 then there are no white edges and the black edges are only incident
to white vertices.

Consequently, if p = 1/2 then all edges are gray.

Theorem 9 is an essential tool and is used in most results on the edit distance func-
tion as we shall see below.
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3 Estimating the edit distance function

Although it is difficult to compute the edit distance function for general hereditary
properties, we can estimate the function through a variety of techniques. First, we
can use the clique spectrum and (9) to construct an upper bound.

3.1 Upper bound via the clique spectrum

We begin with a trio of results with elementary proofs, followed by a result con-
cerning the nature of the edit distance function.

Theorem 10 Let H be a nontrivial hereditary property and let Γ (H ) denote the
clique spectrum of H . If we define

γH (p) := min
(r,s)∈Γ (H )

gK(r,s)(p) = min
(r,s)∈Γ (H )

p(1− p)
r(1− p)+ sp

, (10)

Then edH (p)≤ γH (p).

There are three (not necessarily distinct) extreme points of a clique spectrum
that are of particular interest. First, if (r,0) ∈ Γ (H ) but (r + 1,0) 6∈ Γ (H ), then
r+1 is the chromatic number of H , denoted χ(H ) or just χ , when the hereditary
property is understood. Second, if (0,s) ∈ Γ (H ) but (0,s+1) 6∈ Γ (H ), then s+1
is the complementary chromatic number of H , denoted χ(H ) or just χ . Note that
if H = Forb(H) for some graph H then χ(H ) = χ(H) and χ(H ) = χ(H).

We observe that if χ(H ) ≥ 2 then (χ − 1,0) ∈ Γ (H ) and if χ(H ) ≥ 2 then
(0,χ−1) ∈ Γ (H ). Therefore, we have the following corollary.

Corollary 11 Let H be a nontrivial hereditary property with chromatic number χ

and complementary chromatic number χ .

(a) If χ ≥ 2, then edH (p)≤ p/(χ−1).
(b) If χ ≥ 2, then edH (p)≤ (1− p)/(χ−1).

The chromatic and complementary chromatic numbers of a hereditary property
H can be defined in terms of F (H ) as in Proposition 12.

Proposition 12 Let H =
⋂

H∈F Forb(H) be a nontrivial hereditary property. Then,

(a) χ(H ) = min{χ(H) : H ∈F} and
(b) χ(H ) = min{χ(H) : H ∈F}.

The third extreme point we address is evaluated as follows: the largest value of
r+s+1 such that (r,s)∈Γ (H ) is called the binary chromatic number of H and is
denoted χB(H ) or just χB. This quantity has appeared in the literature previously.
Prömel and Steger [40, 41, 42] called χB−1 simply τ . Bollobás and Thomason [18,
20] called χB−1 the colouring number.
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Since Theorem 9 establishes that every 1/2-core CRG is a gray edge CRG (that
is, of the form K(r,s)) we can compute edH (1/2) in terms of χB(H ). Combining
this with other basic facts, we obtain Theorem 13.

Theorem 13 Let H be a nontrivial hereditary property.

(a) edH (p) is continuous.
(b) edH (p) is concave down.
(c) edH (1/2) = 1

2(χB(H )−1) .

Theorem 13(a) was established by Marchant and Thomason [31]. We note that a
different, analysis-based proof of this is in [16]. Theorem 13(b) was proven in [16].
Theorem 13(c) was proven in [8] in the case where H is a principal hereditary
property. More sophisticated knowledge of the edit distance function has made it a
simple corollary.

Using only Corollary 11 and Theorem 13 we can already find edit distance func-
tions for some important hereditary properties. If P4 denotes the path on 4 ver-
tices, then edForb(P4)(p) = min{p,1− p}. If C5 denotes the cycle on 5 vertices, then
edForb(C5)(p) = 1

2 min{p,1− p}. More about hereditary properties forbidding self-
complementary graphs is below in Corollary 15.

Because edH (p) is continuous and concave down, the function achieves its max-
imum on the interval [0,1]. Thus, both d∗H and p∗H are well-defined and the coor-
dinate (p∗H ,d∗H ) is the point at which edH achieves its maximum value.

Note: Although p∗H is formally defined to be a closed interval, in all but a few
(very) interesting cases3 the interval is degenerate. That is, p∗H is usually a single
value. We will often abuse notation and terminology by referring to p∗H = p, rather
than p∗H = [p, p] and instead indicate explicitly where the interval is not degenerate.

3.2 Upper bound using χB(H )

If H =
⋂

H∈F Forb(H) is a hereditary property such that F contains no complete
graph and no empty graph, then it is trivial that edH (0) = edH (1) = 0. Indeed,
Proposition 12 gives that χ(H ) ≥ 2 and χ(H ) ≥ 2. The statement then follows
from the simple bounds given by Corollary 11.

Using only the γH function, we may narrow down the possible values for p∗H
and for d∗H .

Theorem 14 Let H =
⋂

H∈F Forb(H) with (r,s)∈Γ (H ) such that r+s= χB(H )−
1.

(a) edH (p)≤ γH (p)≤ p(1−p)
r(1−p)+sp for all p ∈ [0,1].

(b) d∗H ≤
1

r+s+2
√

rs .

(c) edH (p)≥min
{

p
χB(H )−1 ,

1−p
χB(H )−1

}
.

3 See, e.g. Section 5.5.2.
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(d) If r ≤ s then p∗H ∈
[ r

r+s ,
1
2

]
.

(e) If s≤ r then p∗H ∈
[ 1

2 ,
r

r+s

]
.

Theorem 14(a) comes from Theorem 10. Theorem 14(b) is simply the maximum
value of gK(r,s)(p). Theorem 14(c) follows from Theorem 13 – continuity, concav-
ity, and the value of edH (1/2) – and the fact that edH (0) = edH (1) = 0. The-
orem 14(d) and (e) follow from the fact that these are the intervals over which
gK(r,s)(p)≥ 1/(2(χB(H )−1)).

Corollary 15 gives the values of p∗H and of d∗H if H = Forb(H) for a self-
complementary graph H.

Corollary 15 Let H =
⋂

H∈F Forb(H) with (r1,s1)∈Γ (H ) and (r2,s2)∈Γ (H )
(not necessarily distinct) such that r1 + s1 = r2 + s2 = χB(H )− 1, r1 ≤ s1, and
r2 ≥ s2. Then

p∗H = 1/2 and d∗H = 1/(2(χB(H )−1)).

In particular, if H = Forb(H), where H is a self-complementary graph, then p∗H =
1/2 and d∗H = 1/(2(χB(H)−1)).

4 Symmetrization

The most powerful tool for determining the edit distance function of a hereditary
property is called symmetrization. This is a term Pikhurko [38] used for a method
due to Sidorenko [47]. In fact, symmetrization can be traced back to Zykov [50] and
his proof of Turán’s theorem. Our version of symmetrization comes directly from
the matrix defined by a CRG.

Theorem 16 (Martin [33]) Let p ∈ [0,1] and let K be a p-core CRG with associ-
ated matrix MK(p), as defined in (4). If x∗ is an optimal solution of the quadratic
program from (6), namely that x∗ ≥ 0, x∗1 = 1 and gK(p) = (x∗)T MK(p)x∗, then

MK(p) ·x∗ = gK(p)1.

In addition, by virtue of K being p-core, the vector x∗ has no zero entries and x∗ is
unique for any fixed labeling of the vertices of K.

4.1 The weighted gray degree of a vertex

In order to interpret Theorem 16, we define the white neighborhood of vertex v in
CRG K to be NW (v) := {v′ ∈V (K) : vv′ ∈ EW(K)}∪{v : if v ∈VW(K)}. The black
neighborhood of v is NB(v) := {v′ ∈V (K) : vv′ ∈ EB(K)}∪{v : if v ∈VB(K)}. The
gray neighborhood of v is NG(v) := {v′ ∈V (K) : vv′ ∈ EG(K)}.
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If x is the optimum weight vector in the quadratic program (6) that defines gK(p),
then the weighted white degree of vertex v ∈V (K) is dW (v) := ∑v′∈NW (v) x(v′). The
weighted black degree of vertex v ∈V (K) is dB(v) := ∑v′∈NB(v) x(v′). The weighted
gray degree of vertex v ∈V (K) is dG(v) := ∑v′∈NG(v) x(v′).

Theorem 16 gives that, for any v ∈ VW(K),

pdW (v)+(1− p)dB(v) = gK(p). (11)

Using the characterization of p-core CRGs from Theorem 9, we can apply (11) to
compute the gray degree of each vertex.

Theorem 17 (Martin [33]) Let p ∈ (0,1) and K be a p-core CRG with optimum
weight vector x.

(a) If p≤ 1/2 then x(v) = gK(p)/p for all v ∈ VW(K) and

dG(v) =
p−gK(p)

p
+

1−2p
p

x(v), for all v ∈ VB(K).

(b) If p≥ 1/2 then x(v) = gK(p)/(1− p) for all v ∈ VB(K) and

dG(v) =
1− p−gK(p)

1− p
+

2p−1
1− p

x(v), for all v ∈ VW(K).

Most of the results below use Theorem 17 as a primary tool. Intuitively, if gK(p)
is small, then dG(v) is large for each vertex and so K has a large amount of gray.
However, if K has too much gray, then some H ∈F (H ) would map to K, which
contradicts the choice of K ∈K (H ). This general paradigm is made more precise
by knowing more about the structure of the CRGs K ∈K (H ).

4.2 Basic structural facts of p-core CRGs

We can use Theorem 17 to obtain some basic helpful results on certain types of
CRGs:

Corollary 18 Let t ≥ 2 and k ≥ 2 be integers.

(a) Let p≤ 1/2 and let K be a p-core CRG on k black vertices.

(i) If K has no gray edges, then gK(p) = 1
k [1+(k−2)p].

(ii) If K has no gray clique of order t, then gK(p)> p/(t−1).

(b) Let p≥ 1/2 and let K be a p-core CRG on k white vertices.

(i) If K has no gray edges, then gK(p) = 1
k [1+(k−2)(1− p)].

(ii) If K has no gray clique of order t, then gK(p)> (1− p)/(t−1).
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Proof. By symmetry, it is sufficient to prove (a). For (a)(i) we observe that, by The-
orem 9(a), all edges are white and it is easy to see that the optimum weight vector
in equation (6) is constant. Thus, all vertices have the same weight and the result
follows.

For (a)(ii), we use a well-worn trick, used e.g. in [35]. Let the maximum-sized
clique of K (in terms of the number of vertices) be on vertex set {v1, . . . ,vc} where
c≥ 2. For every w 6∈ {v1, . . . ,vc} we know that wvi is a gray edge for at most c−1
values of i. Using Theorem 17(a), we have

c

∑
i=1

(
p−gK(p)

p
+

1−2p
p

x(vi)

)
≤ (c−1)

(
1−

c

∑
i=1

x(vi)

)

(c−3+1/p)
c

∑
i=1

x(vi)+1≤ c
p

gK(p).

Since c−3+1/p≥ c−1> 0, we can conclude that gK(p)> p/c≥ p/(t−1), which
concludes the proof. ut

Remark 19 The bound in Corollary 18(a)(ii) can be approached by a CRG on
black vertices where the gray edges induce a blow-up of Kt−1.

5 Known results

5.1 Hereditary properties that forbid either a complete or an empty
graph

If H ⊆ Forb(Kh) then edH (1) > 0 and, by Proposition 4, if H ⊆ Forb(Kh) then
edH (0)> 0. We can produce bounds on the edit distance function for such proper-
ties.

Theorem 20 (Martin [33]) Let H =
⋂

H∈F (H ) Forb(H) be a nontrivial heredi-
tary property with H ⊆ Forb(Kh) for some h≥ 2 such that

• m is the least positive integer such that F (H ) contains a complete multipartite
graph with m parts, and

• χ is the chromatic number of H .

Note χ ≥ 2 because H is nontrivial and χ ≤ m≤ h. Then

(a) edH (p) = p
χ−1 , for all p ∈ [0,1/2], and

(b) 1−p
χ−1 +

2p−1
m−1 ≤ edH (p)≤min

{
1− p+ 2p−1

m−1 ,
p

χ−1

}
, for all p ∈ [1/2,1].

In particular, if H = Forb(Kh) then edH (p) = p
h−1 .
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Remark 21 The bound edH (p)≤ p/(χ−1) in Theorem 20 was not expressed ex-
plicitly in [33] but follows directly from the concavity of the edit distance function.
By Proposition 4, there are similar bounds for H where H ⊆ Forb(Kh). Conse-
quently, edForb(Kh)

(p) = (1− p)/(h−1).

5.2 C∗6 and H9

5.2.1 Forb(C∗6)

In [31], Marchant and Thomason address the graph C∗6 , which is the 6-cycle with
a diagonal. The extreme points of the clique spectrum of Forb(C∗6) are (1,1) and
(0,2). Thus, if H = Forb(C∗6), then γH (p) = min{p(1− p),(1− p)/2}.

In fact, the edit distance function has a smaller value for p ∈ (0,1).

Theorem 22 (Marchant-Thomason [31]) Let H = Forb(C∗6), where C∗6 is the 6-
cycle with a diagonal.

(a) edH (p) = min
{

p
1+2p ,

1−p
2

}
, for p ∈ [0,1].

(b) p∗H = 1/2 and d∗H = 1/4.

The CRG that corresponds to the p/(1+2p) part of the function has 1 white vertex,
2 black vertices, one white edge between the black vertices and two gray edges
incident to the white vertex. See Figure 3. Although the edit distance function cannot
be determined by the clique spectrum, the values of p∗H = 1/2 and d∗H = 1/4 can
be computed by knowing only the clique spectrum.

Fig. 3 The 3-vertex CRG that gives
p/(1+2p) in Theorem 22. The white edge
is indicated, the two gray edges are not.

Fig. 4 The 5-vertex CRG that gives
p/(1+4p) in Theorem 23. The two black
edges are indicated, the eight gray edges
are not.

Using the tools in Section 4, the proof of Theorem 22 is much easier than the
original proof.

Proof. By Theorem 13, we may use continuity, concavity and the knowledge of the
value at p = 1/2 to conclude that edH (p) = (1− p)/2 for all p ∈ [1/2,1]. Let p ∈
[0,1/2) and K be a p-core CRG. If C∗6 67→ K and K has no white vertices, then it has
no gray triangle and Corollary 18(a)(ii) gives that gK(p)> p/2. If C∗6 67→K and K has
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one white vertex, then there are at most two black vertices, which cannot have a gray
edge. Corollary 18(a)(ii) and Proposition 8 give that gK(p)≥

(
p−1 +(1/2)−1

)−1
=

p/(1+2p), as required. ut

5.2.2 Forb(H9)

Balogh and Martin [16] introduced the graph H9, which is drawn in Figure 1. For
H = Forb(H9), the values of p∗H and d∗H cannot be determined by the clique
spectrum and this was established in [16]. Later, the author determined the edit
distance function completely.

Theorem 23 (Martin [34]) Let H9 be the graph drawn in Figure 1 and let H =
Forb(H9).

(a) edH (p) = min
{

p
3 ,

p
1+4p ,

1−p
2

}
for p ∈ [0,1].

(b) p∗H = 1
8 (1+

√
17) and d∗H = 1

8 (7−
√

17).

The CRG that corresponds to the p/(1+ 4p) part of the function has 5 white ver-
tices, 2 nonadjacent white edges and the remaining 8 edges gray. See Figure 4.

5.3 Cycles

The case of Forb(Ch), where Ch is a cycle on h≥ 3 vertices, has been widely inves-
tigated. Theorem 20 gives immediately that edForb(C3)(p) = edForb(K3)(p) = p/2.

In her Master’s thesis, Peck almost completely settled the edit distance function
for hereditary properties that forbid a cycle. Utilizing techniques inspired by the
cycle arguments of Pósa [39], she determined the edit distance function for Forb(Ch)
for odd h≥ 5. For even h≥ 4, she was able to determine enough of the function to
find the maximum.

Theorem 24 (Peck [37]) Let H = Forb(Ch) where Ch is the cycle on h ≥ 4 ver-
tices.

(a) If h is odd, then edH (p) = min
{

p
2 ,

p(1−p)
1−p+(dh/3e−1)p ,

1−p
dh/2e−1

}
for all p ∈ [0,1].

(b) If h is even, then edH (p)=min
{

p(1−p)
1−p+(dh/3e−1)p ,

1−p
dh/2e−1

}
for all p∈ [dh/3e−1,1].

Marchant and Thomason [31] first proved the case of h = 4 and, in fact, proved

Theorem 25 (Marchant-Thomason [31]) edForb(C4)(p)= p(1− p) for all p∈ [0,1].

Marchant [32] proved the case for h = 5,7. The cases of h = 6,8,9,10 were first
proven in [33] and, in fact, a larger range of p was proven in [33] for small even h.

Theorem 26 (Martin [33]) Let H = Forb(Ch), where Ch is the cycle on h ≥ 4
vertices.



14 Ryan R. Martin

(a) If h = 6 then edH (p) = min
{

p(1− p), 1−p
2

}
for all p ∈ [0,1].

(b) If h = 8 then edH (p) = min
{

p(1−p)
1+p , 1−p

3

}
for all p ∈ [0,1].

(c) If h = 10 then edH (p) = min
{

p(1−p)
1+2p , 1−p

4

}
for all p ∈ [1/7,1].

Corollary 27 Let H = Forb(Ch) where Ch is the cycle on h≥ 4 vertices.

(a) If h 6∈ {4,7,8,10,16} then

p∗H = 1
dh/2e−dh/3e+1 and d∗H = dh/2e−dh/3e

(dh/2e−1)(dh/2e−dh/3e+1) .

(b) If h ∈ {4,7,8,10,16} then

p∗H = 1
1+
√
dh/3e−1

and d∗H = 1
dh/3e+2

√
dh/3e−1

.

It is interesting that p∗Forb(Ch)
and d∗Forb(Ch)

are both rational and result from
the intersection of the g functions of two p-core CRGs, except in the cases h ∈
{7,8,10,16}.

5.4 Powers of cycles

A natural extension of hereditary properties defined by forbidding certain cycles are
hereditary properties defined by forbidding certain powers of cycles. For h≥ 2t+1,
we define Ct

h to be the graph with vertex set {1, . . . ,h} and i j ∈ E(Ct
h) if and only if

|i− j| ≤ t (mod h). We consider the case for t = 2, that is, the case of the squared
cycle.

For h = 5, C2
5 is complete and from Theorem 20 we see that

edForb(C2
5)
(p) = edForb(K5)(p) = p/4.

In the case of C2
6 , the complement is a perfect matching and we can use Proposi-

tion 4 if we know the edit distance function for Forb(M6), where M6 is the perfect
matching on 6 vertices. It is easy to see that the CRGs K ∈F (Forb(M6)) have at
most 2 black vertices and no pair of white vertices can have a gray edge between
them, otherwise M6 7→ K. By Theorem 9(a), we can conclude that edForb(M6) =
p(1−p)

1+p for p ∈ [0,1/2]. Some more work verifies that edForb(M6) =
p(1−p)

1+p for
p ∈ [1/2,1] also. Hence,

edForb(C2
6)
(p) = edForb(M6)(1− p) = p(1−p)

2−p .

The complement of C2
7 is simply C7 and so Proposition 4 gives
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edForb(C2
7)
(p) = edForb(C7)(1− p) = min

{
p
3 ,

p(1−p)
2−p , 1−p

2

}
.

Peck established some more values of edForb(C2
h)
(p) for h ∈ {8,9,10}, which we

give in Theorem 28.

Theorem 28 (Peck [37]) Let H = Forb(C2
h) where C2

h is the square of the cycle on
h vertices.

(a) If H = Forb(C2
8) then edH (p) = min

{
p
3 ,

p(1−p)
2−p , 1−p

2

}
for all p ∈ [0,1].

(b) If H = Forb(C2
9) then edH (p) = min

{
p(1−p)

2−p , p(1−p)
1+p

}
for all p ∈ [0,1].

(c) If H = Forb(C2
10) then edH (p) = min

{
p
3 ,

1−p
3

}
for all p ∈ [0,1].

(d) If H = Forb(C2
11) then edH (p) = min

{
p
3 ,

p(1−p)
2

}
for all p ∈ [0,1/2] and

edH (p)≤min
{

p(1−p)
2 , 1−p

3

}
for all p ∈ [1/2,1].

(e) If H = Forb(C2
12) then edH (p) = p(1−p)

2 for all p ∈ [0,1/2] and

edH (p)≤min
{

p(1−p)
2 , 1−p

3

}
for all p ∈ [1/2,1].

Theorem 28, together with Theorem 13 are enough to determine the value of
p∗

Forb(C2
h)

and of d∗
Forb(C2

h)
for h ∈ {5, . . . ,12}.

In work in progress, Berikkyzy, Peck and Martin have extended the results
from [37] to apply to powers of cycles, provided the number of vertices is large
enough.

Theorem 29 (Berikkyzy-Martin-Peck [17]) Let H = Forb(Ct
h) where Ct

h is the
t th power of the cycle on h vertices. For t ≥ 1 and h sufficiently large, let `0 =
dh/(t +1)e, `t = dh/(2t +1)e and p0 = `−1

t .

(a) If (t +1) - h then edH (p) = min
{

p
t+1 ,

p(1−p)
t(1−p)+(`t−1)p ,

1−p
`0−1

}
for p ∈ [0,1].

(b) If (t +1) | h, then edH (p) = min
{

p(1−p)
t(1−p)+(`t−1)p ,

1−p
`0−1

}
for p ∈ [p0,1].

If t = 2, then h ≥ 13 suffices for Theorem 29. In general, the bound that is proven
to suffice is h≥ 4t2 +Ω(t) although this is likely not best possible.

5.5 Complete bipartite graphs

5.5.1 Forb(Ks,s)

The case of H = Forb(K2,2) was established by Marchant and Thomason [31]
where it was shown that edForb(K2,2)(p) = p(1− p) for all p ∈ [0,1].

In the case of H = Forb(K3,3), the values of p∗Forb(K3,3)
=
√

2−1 and d∗Forb(K3,3)
=

3−2
√

2 were established by Balogh and Martin [16].
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For p not too small, the edit distance function for Forb(K3,3) coincides with
γForb(K3,3)(p) = p(1−p)

1+p , but for p very small, the edit distance function is strictly
smaller.

Theorem 30 (Marchant-Thomason [31]) Let H = Forb(K3,3) where K3,3 is the
complete bipartite graph with 3 vertices in each part.

(a) edH (p) = p(1−p)
1+p , for p ∈ [1/9,1].

(b) edH (p)< p(1−p)
1+p , for p ∈ (0,1/124].

The CRGs used to establish Theorem 30(b) are defined by constructions due to
Brown [22] to address a related Zarankiewicz problem. Specifically, for a prime
power r, the constructions are (r2− r)-regular bipartite graphs on 2r3 vertices. Such
graphs have no copy of K3,3 and, of course, no copy of K3. For such a graph G, we
construct the CRG K for which the vertices of G are (black) vertices of K, the edges
of G are gray edges of K and the nonedges of G are white edges of K. By (5), this
construction gives

fK(p) =
1

2r3

[
1+ p

(
2r3− r2 + r−2

)]
With r = 19, we obtain strict inequality for p = 1/124 and the continuity and con-
cavity of the edit distance function gives Theorem 30(b) for all p≤ 1/124.

It is also established in [31] that the value of d∗Forb(Ks,s)
cannot be determined by

the clique spectrum. The only extreme point of the clique spectrum is (1,s−1) and
the resulting CRG has gK(1,s−1) =

p(1−p)
1+(s−2)p = γForb(Ks,s)(p). The construction is a

CRG K(s−1) on 2s− 2 black vertices consisting of s− 1 disjoint white edges. It is
easy to show that Ks,s 67→ K(s−1) and since the g function of each component is 1/2,
Proposition 8 gives gK(2s−2)(p) = 1/(2s−2).

So, gK(2s−2)(p) is less than the maximum value of γForb(Ks,s)(p) for s≥ 7. We ask
in Problem 2 if 1/(2s− 2) is, indeed, the maximum value of edForb(Ks,s)(p) and if
that value is achieved for a positive length interval.

5.5.2 Forb(K2,t)

McKay and Martin [35] establish some surprising results for the hereditary property
Forb(K2,t).

Theorem 31 (Martin-McKay [35]) Let H = Forb(K2,t) where K2,t is the com-
plete bipartite graph with 2 vertices in one part and t vertices in the other part. For
all t ≥ 2, γH (p) = min{p(1− p),(1− p)/(t−1)}.

(a) If t = 3 then edH (p) = min
{

p(1− p), 1−p
2

}
for all p ∈ [0,1].

(b) If t = 4 then edH (p) = min
{

p(1− p), 7p+1
15 , 1−p

3

}
for all p ∈ [0,1].

(c) If t ≥ 5 and is odd, then d∗H = 1
t+1 and p∗H ⊇

[
2t−1

t(t+1) ,
2

t+1

]
.
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(d) If t ≥ 9, there exists a p0(t)< 1/2 such that edH (p)< p(1− p).

There are a number of interesting consequences arising from the study of these
hereditary properties. First, we note that the CRG that gives the portion of the func-
tion in Theorem 31(b) corresponding to (1+7p)/15 results from a strongly-regular
graph construction.

Definition 32 A (n,k,λ ,µ)-strongly regular graph or (n,k,λ ,µ)-SRG is a k-regular
graph on n vertices for which each pair of adjacent vertices has exactly λ common
neighbors and for which each pair of nonadjacent vertices has exactly µ common
neighbors.

The CRG we use for Theorem 31(b) is constructed from a (15,6,1,3)-SRG,
commonly called GQ(2,2). It is a member of the family of so-called generalized
quadrangles. Given a GQ(2,2) G′, the CRG K′ has 15 white vertices that correspond
to the vertices of the graph. An edge of K′ is gray if and only if the corresponding
pairs of vertices are adjacent in G′. See Figure 5 for the graph K2,4 and Figure 6
for the 15-vertex CRG mentioned above. In [35], it is shown that K2,4 67→ K′ and
gK′(p) = (1+7p)/15.

Fig. 5 The complete bipartite graph K2,4.
Fig. 6 The 15-vertex CRG that gives (1+
7p)/15 in Theorem 31(b). The white edges
are shown. The remaining edges are gray,
and form a graph isomorphic to GQ(2,2).

Similar constructions from strongly regular graphs are in K (Forb(K2,t)) and
have a smaller g function than γH (p) = min{p(1− p),(1− p)/(t−1)} for certain
values of t and p.

For Theorem 31(c), the corresponding CRG K(t) has t + 1 black vertices and a
perfect matching of (t +1)/2 white edges. The remaining edges are gray. It is easy
to show that K2,t 67→ K(t+1) and gK(t+1)(p) = 1/(t +1).

For Theorem 31(d), the constructions are due to Füredi [28] to address a related
Zarankiewicz problem. If q is a prime power such that t−1 divides q−1, then there
exists a graph on 2(q2−1)/(t−1) vertices that is q-regular with no copy of K2,t and
no triangle. This is enough to ensure that K2,t does not map to the corresponding
CRG. By (5), this construction gives
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fK(p) =
t−1

2(q2−1)

[
1+ p

(
2(q2−1)

t−1
−q−2

)]
With t ≥ 9, we can find a sufficiently large prime power q so that fk(p)< p(1− p).

5.6 Split graphs

A graph H on at least two vertices is a split graph if there is a partition of V (H) into
one independent set and one clique. For a split graph with independence number
α ≥ 2 and clique number ω ≥ 2, either α+ω = h or α+ω = h+1. We can compute
the edit distance function of hereditary properties defined by such graphs.

Theorem 33 (Martin [34]) Let H be a split graph which has independence number
α = α(H)≥ 2 and clique number ω = ω(H)≥ 2. If H = Forb(H) then

edH (p) = min
{

p
ω−1

,
1− p
α−1

}
.

Hence p∗H = (ω−1)/(α +ω−2) and d∗H = 1/(α +ω−2).

6 Quantities related to the edit distance function

We get the following notation from Balogh, et al. [11]. For a graph property4 H ,
the labeled slice of H is the set H n of graphs in H with vertex set {1, . . . ,n}. The
labeled speed of H is the function n 7→ |H n|.

Theorem 34 ([13, 14, 15, 19]) If H is a hereditary property of graphs then one of
the following holds:

(i) There exist N,k ∈ N and polynomials {pi(n)}k
i=0 such that, for all n > N,

|H n|= ∑
k
i=0 pi(n)in.

(ii) For some t ∈ N, t > 1, we have |H n|= n(1−1/t+o(1))n.
(iii) For n sufficiently large, n(1+o(1))n ≤ |H n| ≤ 2o(n2).
(iv) For some k ∈ N, k > 1, we have |H n|= 2(1−1/k+o(1))n2/2.

Here k = χB(H )−1.

This partition of hereditary properties was first discovered by Scheinerman and
Zito [46]. As for the precise results, parts (i) and (ii) were established by Balogh,
Bollobás and Weinreich [13], part (iii) was also established by Balogh, Bollobás and
Weinreich [14, 15] and part (iv) was established by Bollobás and Thomason [19].

4 For us, the property will be hereditary, although that is not necessary in order to define the speed.
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Part (iv) has been well-studied, including the o(1) error term [12]. It has also
been generalized. Bollobás and Thomason [20] define cp(H ) as follows:

cH (p) = lim
n→∞
− log2 Pr(G(n, p) ∈H )/

(n
2

)
. (12)

They showed that the limit exists, based on work by Alekseev [1] (see also [2]).
Thomason [49] compiled these results to show the relationship to the edit distance
function:

Theorem 35 (Thomason [49]) Let H be a nontrivial hereditary property and let
cH (p) be defined as in (12). Then

cH (p) = (− log2 p(1− p))edH

(
log2(1− p)

log2 p(1− p)

)
.

As we see, cH (p) can be derived directly from the edit distance function.

Remark 36 The function cH (p) is not necessarily concave down, however edH (p)
is. Concavity is a key tool in finding the elusive lower bounds on the edit distance
function which can then be used to compute lower bounds for cH (p).

Perhaps other functions of hereditary properties can be defined from the edit
distance function. We are particularly interested in other metrics. For each positive
integer n, let d be a metric on the space of graphs with vertex set {1, . . . ,n}. For any
hereditary property H , define

d(G,H ) = min
{

d(G,G′) : V (G′) =V (G),G′ ∈H
}
,

and define the function

φH (p) := limsup
n→∞

max
{

d(G,H ) : |V (G)|= n, |E(G)|=
⌊

p
(n

2

)⌋}
. (13)

In Question 3 from Section 8.2, we ask whether φH (p) can be expressed as a
function of p and edH (·) if d satisfies a natural property. Recall that dist represents
the edit metric. It is clear that in order for any such result to exist, the metric d should
be continuous with respect to the edit metric. That is, for every ε > 0, there exists
a δ such that d(G,G′) < ε whenever dist(G,G′) < δ . This is a natural restriction
because, for example, the trivial metric where d(G,G) = 0 but d(G,G′) = 1 when
G 6= G′ produces no useful results.

A well-studied metric is the so-called cut metric (or cut norm). Introduced by
Frieze and Kannan [27] and investigated further for graph limits (see, e.g., Borgs
et al. [21]) is defined as follows for graphs on the same labeled vertex set V =
{1, . . . ,n}:

d�(G,G′) = max
S,T⊂V

1
n2 |eG(S,T )− eG′(S,T )| ,



20 Ryan R. Martin

where eG(S,T ) is the number of ordered pairs (i, j) with i ∈ S and j ∈ T and i j ∈
E(G). If S and T are disjoint, it counts the number of edges between S and T in G.

The cut metric is useful for comparing random graphs. Although two typical
graphs selected according to G(n, p) have edit distance close to 2p(1− p), their d�
distance is O(1/n).

7 Generalizations of edit distance

Axenovich and Martin have investigated natural generalizations of the edit distance
problem. The paper [9] addressed editing matrices (Section 7.1 below). The pa-
per [10] addressed both editing the edges of multicolorings of a complete graph
(Section 7.2) and editing the edges of a directed graph (Section 7.3).

7.1 Matrices

Let A = {A1, . . . ,Ar} be a partition of pairs from [m]× [n] into r nonemtpy classes.
An m× n matrix A = (ai j) is said to have a pattern A provided that ai j = ai′ j′ if
and only if (i, j),(i′, j′)∈ At for some t ∈ {1, . . . ,r}. A pattern is non-trivial if r≥ 2.
For a matrix M, if there is a submatrix M′ with pattern A then we say that M has a
subpattern A .

For a pattern A and positive integers m,n,s, we define Forb(m,n;s,A ) to be the
set of all m×n matrices with at most s distinct entries and not containing subpattern
A .

For two matrices A and B of the same dimensions, we say that dist(A,B) is the
number of positions in which A and B differ; i.e., it is the matrix Hamming distance.
For a class of matrices F and a matrix A, all of the same dimensions, we denote
dist(A,F ) = min{dist(A,F ) : F ∈F}. Finally,

f (m,n;s,A ) := max{dist(A,F ) : A ∈M (m,n;s),F = Forb(m,n;s,A )}/mn.
(14)

The function f in (14) counts the maximum proportion of edits required to re-
move a pattern with r places from an m×n matrix with s distinct entries.5

Theorem 37 (Axenovich-Martin [9]) Let s,r be positive integers, s≥ r. Let b1,b2
be positive constants such that b1 ≤ m/n≤ b2. Let A be a non-trivial pattern with
r distinct entries. Then

f (m,n;s,A ) = (1+o(1))
(

s− r+1
s

)
.

5 In [9], f counts the number of edits, but we normalize by dividing by mn to make it consistent
with the rest of this paper.
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Without loss of generality, the case of s = 2 corresponds to a {0,1}-matrix. If
the pattern has both zeros and ones, then r = 2 and the edit distance is 1/2; i.e.,
an asymptotically most efficient editing algorithm is to make all entries zero or all
entries one, whichever is most prevalent and the worst case is that there is the same
number of each. If the pattern has, say only zeroes, then the edit distance is 1 because
the worst case is that the original matrix is all zeros and almost all of them must be
changed to one.

The setting for matrices is identical to the case of editing the m× n complete
bipartite graph in which the edges are colored with s distinct colors.

7.2 Multicolor edit distance

We will use slightly different terminology from [10] so as not to confuse it with
similar notation for hypergraphs in Section 8.1. For any integer r ≥ 2, an r-colored-
graph is pair (V,c) such that V is a finite labeled set and c : E → {1, . . . ,r}. For r-
colored graph G and ρ ∈ {1, . . . ,r}, we denote Eρ(G) to be the set of edges colored
ρ .

If G and G′ are two r-colored graphs on the same labeled vertex set, then the
edit distance between them, dist(G,G′) is the proportion of edges that receive a
different color. For example, if r = 2 then graphs correspond to black edges and
the complement corresponds to white edges. The following definitions for r = 2 are
consistent with the graph case.

Further, we may define dist(G,H ) for any hereditary property of r-colored-
graphs as in (1). In this setting, a property is still hereditary if it is closed under
isomorphism and the deletion of vertices. For any r-colored-graph H, we write
Forb(H) to be the set of all r-colored-graphs that have no copy of H. Note that
“induced” is not necessary here because all edges receive a color. For an integer
r ≥ 2, a density vector p = (p1, . . . , pr) is a nonnegative real vector with the prop-
erty that ∑

r
ρ=1 pi = 1. The domain of r dimensional density vectors is the (standard)

(r−1)-simplex.
If H is a hereditary property of r-colored-graphs then we may define the edit

distance function parallel to (3) as follows.

edH (p) := lim
n→∞

max
{

dist(G,H ) : |V (G)|= n, |Eρ(G)|= pρ

(n
2

)
,ρ = 1, . . . ,r

}
.

The limit was proven to exist in [10]. We omit floors and ceilings in defining |Eρ(G)|
because they play no role in the limit.

We can also define the equivalent of CRGs in this setting. In [10], the term type
is used, though for consistency of this paper, we will just call them r-CRGs.6

6 In Section 8.1, we refer to r-CRHs when discussing the edit distance on r-uniform hypergraphs.



22 Ryan R. Martin

Definition 38 An r-CRG K is a pair (U,φ) where U is a finite set of vertices and
φ : U ×U → 2{1,...,r}− /0 such that φ(x,y) = φ(y,x) and φ(x,x) 6= {1, . . . ,r}. The
sub-r-CRG induced by W ⊆U is the r-CRG that results from deleting U−W.

We say that an r-colored-graph H = (V,c) embeds in r-CRG K, and write H 7→
K, if there is a map γ : V →U such that c(vv′) = c0 implies c0 ∈ φ(γ(v)γ(v′)). For
any hereditary property H =

⋂
H∈F (H ) Forb(H), let K (H ) be the set of r-CRGs

for which none of F (H ) embeds in that r-CRG.

The notion of the binary chromatic number is more complicated in the r-colored-
graph case when r > 2. There are weak and strong colorings.

Definition 39 Let H =
⋂

H∈F (H ) Forb(H) be a hereditary property of r-colored-
graphs.

• An r-tuple (a1, . . . ,ar) of nonnegative integers is weakly-good if for some H ∈
F (H ) the vertex set V (H) can be partitioned into sets S1, . . . ,Sr such that
for each ρ ∈ {1, . . . ,r} with aρ 6= 0, the partition can be further refined Sρ =
Vρ,1∪·· ·∪Vρ,aρ

where each edge in Vρ, j does not have color ρ .
• An r-tuple (a1, . . . ,ar) of nonnegative integers is strongly-good if for some H ∈

F (H ) the vertex set V (H) can be partitioned into sets S1, . . . ,Sr such that for
each ρ ∈ {1, . . . ,r} with aρ 6= 0, the partitioned can be further refined Sρ =
Vρ,1∪·· ·∪Vρ,aρ

where each edge in Vρ, j must have color ρ .

We can then define spectra and r-ary chromatic numbers based on weak and
strong colorings.

Definition 40 • The weak clique spectrum of H is the set of all tuples (a1, . . . ,ar)
that are not weakly-good. The weak r-ary chromatic number of H , denoted
χwk

r (H ), is the largest a1 + · · ·+ ar + 1 such that (a1, . . . ,ar) is in the weak
clique spectrum of H .
• The strong clique spectrum of H is the set of all tuples (a1, . . . ,ar) that are not

strongly-good. The strong r-ary chromatic number of H , denoted χst
r (H ), is

the largest a1+ · · ·+ar+1 such that (a1, . . . ,ar) is in the strong clique spectrum
of H .

The f and g functions are defined similar to the graph case.

Definition 41 Let K = ({u1, . . . ,uk},φ) be an r-CRG and for p = (p1, . . . , pr), let
MK(p) denote the matrix with entries defined as follows:

mK(p)i j = 1− ∑
ρ∈φ(ui,u j)

pρ .

The functions fK and gK are defined as follows:

fK(p) =
1
k2 1T MK(p)1 (15)

gK(p) = min
{

xT MK(p)x : xT 1 = 1,x≥ 0
}
. (16)
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We say that a CRG K is p-core if, for any proper sub-r-CRG K′ of K, gK′(p) >
gK(p).

We summarize the basic properties of this version of the edit distance function
that generalize Theorems 13, 3 and 6. For p = (p1, . . . , pr), the random r-colored-
graph G(n,p) is the complete graph on n vertices in which each edge independently
receives color ρ with probability pρ .

Theorem 42 (Axenovich-Martin [10]) Let H be a hereditary property of r-colored-
graphs.

(a) edH (p) is continuous over the (r−1)-simplex.
(b) edH (p) is concave down over the (r−1)-simplex.
(c) edH (r−11)≥ 1/(r(χst

r (H )−1)).
(d) edH (p)≤ 1/(χwk

r (H )−1) for all p in the (r−1)-simplex.
(e) edH (p) = limn→∞E[dist(G(n,p),H )] for all p in the (r−1)-simplex.
(f) edH (p) = inf{ fK(p) : K ∈K (H )} = inf{gK(p) : K ∈K (H )} for all p in

the (r−1)-simplex.

Finally, we give some examples of results in the case r = 3.

Theorem 43 (Axenovich-Martin [10]) Let r = 3 and let H =
⋂

H∈F Forb(H) be a
hereditary property of r-colored-graphs. Let d∗H :=max{edH (p) : pT 1= 1,p≥ 0}.

(a) If F is a family that consists of a single monochromatic triangle, then d∗H =
1/2.

(b) If F is a family that consists of a single triangle with two edges colored 1 and
the other edge colored 2, then d∗H = 1/2.

(c) If F is a family that consists of two monochromatic triangles of different colors,
then d∗H = 1/2.

(d) If F is a family that consists of all six bi-chromatic triangles, then d∗H = 2/3.
(e) If F is a family that consists of a single rainbow triangle, then d∗H = 1/3.

7.3 Directed edit distance

A simple directed graph or digraph G is a pair (V,c) such that V is a finite labeled
set and, if (V )2 =V ×V −{(v,v) : v ∈V} then c : (V )2→{©,−,←,→} where

• c(v,w) = c(w,v) if and only if c(v,w) ∈ {©,−} and
• c(v,w) =→ if and only if c(w,v) =←.

In the standard representation of digraphs as a pair (V,E) where E ⊆ (V )2, we in-
terpret c(v,w) =© to mean that neither (v,w) nor (w,v) is in E, c(v,w) = − to
mean that both (v,w) and (w,v) are in E, and c(v,w) =→ to mean that (v,w)∈ E but
(w,v) 6∈ E. We also define the following for any digraph G:

• E©(G) is the set of all unordered pairs {v,w} such that c(v,w) =©.
• E←(G) is the set of all ordered pairs {v,w} such that c(v,w) =←.
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• E→(G) is the set of all ordered pairs {v,w} such that c(v,w) =→.
• E−(G) is the set of all unordered pairs {v,w} such that c(v,w) =−.

If G = (V,c) and G′ = (V,c) are two digraphs on the same labeled vertex set
with the same fixed palette, then the edit distance between them, dist(G,G′) is the
proportion of ordered pairs on which G and G′ differ. We define dist(G,H ) for any
hereditary property of digraphs on any palette as in (1). A property is, of course,
hereditary if it is closed under isomorphism and the deletion of vertices. For any
digraph, we write Forb(H) to be the set of all digraphs that have no induced copy of
H.

The digraph case encompasses several well-studied subclasses of digraphs. Just
as the number of colors must be specified in Section 7.2, the palette must be speci-
fied for the digraph case.

Definition 44 We say that P ⊆ {©,−,←,→} is a palette if either none or both of
“←” and “→” are in P . There are 5 possible nontrivial palettes:

(0) P0 = {©,−,←,→} is the general case.
(1) Pcompl = {−,←,→} is the case of simple digraphs such that every pair of

vertices has at least one arc between them.
(2) Porien = {©,←,→} is the case of oriented graphs.
(3) Pundir = {©,−} is the usual case of simple, undirected graphs.
(4) Ptourn = {←,→} is the case of tournaments.

Definition 45 A directed density vector (p,q) is a pair such that p ≥ 0, q ≥ 0 and
p+2q≤ 1. For different palettes, there are further restrictions.

(0) If P = Pcompl then p+2q = 1.
(1) If P = Porien then p = 0 and q≤ 1/2.
(2) If P = Pundir then q = 0 and p≤ 1; i.e., the usual graph case.
(3) If P = Ptourn then p = 0 and q = 1/2.

If H is a hereditary property of digraphs with palette P , then for all directed
density vectors p = (p,q), we define the edit distance function for hereditary prop-
erty H as follows:

edH (p) := lim
n→∞

max
{

dist(G,H ) :
|V (G)|= n, |E−(G)|= bp

(n
2

)
c,

|E←(G)|= |E→(G)|= bq
(n

2

)
c

}
.

The limit was proven to exist in [10].
In [10], the equivalent of CRGs (called dir-types in [10], but it would be natural

to call them P-dir-CRGs for palette P) are defined as well as the notion of H 7→ K
for any digraph H and any K a P-dir-CRG. The matrix MK(p) and functions fK(p)
and gK(p) are defined analogously. In addition, the strong directed clique spectrum,
strong directed chromatic number χ

st,dir
P (H ), weak directed clique spectrum and

weak directed chromatic number χ
wk,dir
P (H ) are defined for each palette, although

for Pundir and Ptourn “strong” and “weak” are the same, where we use the notation
χdir

P (H ).
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We will not give the detailed definitions of these quantities or of the random
digraph G(n,p). The natural notions are defined precisely in [10]. We have similar
basic results for the directed case as for the multicolored case in Theorem 42.

Theorem 46 (Axenovich-Martin [10]) Let P be a palette and let H be a hered-
itary property of digraphs with palette P . Let the domain be defined as in Defini-
tion 45.

(a) edH (p) is continuous over the domain.
(b) edH (p) is concave down over the domain.
(c) edH (r−11)≥ 1/(r(χst,dir

P (H )−1)).
(d) edH (p)≤ 1/(χwk,dir

P (H )−1) for all p in the domain.
(e) edH (p) = limn→∞E[dist(G(n,p),H )] for all p in the domain.
(f) edH (p) = inf{ fK(p) : K ∈K (H )} = inf{gK(p) : K ∈K (H )} for all p in

the domain.

We give some examples involving triangles.

Theorem 47 (Axenovich-Martin [10]) Let H be a hereditary property of digraphs
with palette P .

(a) If H = Forb(Hdir) where Hdir is a directed triangle, then d∗H = 1/2 regardless
of P .

(b) If H = Forb(Htra) where Htra is a transitive triangle, then H is a trivial hered-
itary property as long as P = Ptourn.

(c) If H = Forb(Htra) where Htra is a transitive triangle, then d∗H = 1/2, as long
as P 6= Ptourn.

(d) If H = Forb(Hdir)∩Forb(Htra) where Hdir is a directed triangle and Htra is a
transitive triangle, then d∗H = 1/2, as long as P 6= Ptourn.

The case of tournaments turns out to be trivial. Theorem 47(b) is a simple con-
sequence of Ramsey theory, a hereditary property H =

⋂
H∈F (H ) Forb(H) is non-

trivial if and only if no member of F (H ) is transitive. In the case of tournaments,
the density vector must be p = (0,1/2). The edit distance function is, therefore, a
constant.

Theorem 48 Let H be a nontrivial hereditary property of tournaments and P =
Ptourn. Then

edH (0,1/2) =
1

2(χdir
P (H )−1)

.
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8 Future directions

8.1 Hypergraph edit distance

Berikkyzy and the author have been investigating the extension of the edit distance
problem to r-uniform hypergraphs (r-graphs). A colored regularity hypergraph of
order r (r-CRH) is a triple (V,E,φ) in which V is a vertex set, E is the collection
of all r-multisets on V and φ : E→ {W,G,B} with the restrictions that, (a) for any
v∈V , φ({v, . . . ,v})∈ {W,B} and (b) for any permutation σ ∈ Σr, φ({v1, . . . ,vr}) =
φ({vσ(1), . . . ,vσ(r)}). Therefore, a 2-CRH is just a CRG.

In parallel to the graph case, we can define colored homomorphisms from r-
uniform hypergraphs to r-CRHs so that if r-graph H does not map to a r-CRH K,
then an r-graph G which is edited according to the “recipe” defined by K will have
no induced copy of H.

We can then define, for each r-CRH K, an r-linear form which we can also call
gK(p). It is easy to prove, for a hereditary property H of r-graphs, that there is a
family F (H ) of r-CRHs such that

edH (p)≤ inf
K∈K (H )

gK(p). (17)

The difficulty in extending the theory of the edit distance in graphs to hypergraphs
is in proving that (17) is, in fact, an equality.

The above definition of the r-CRH would not seem to be adequate to capture the
subtleties of hypergraphs. Consider the common example of a hypergraph whose 3-
edges are cyclic triangles in an underlying random tournament. See, e.g., the survey
of hypergraph Turán theory by Keevash [30]. This hypergraph has no copy of the
tetrahedron K3

4 but crossing triples would be gray in any 3-CRH that models it.
Strong hypergraph regularity was developed in the 3-uniform case by Frankl

and Rödl [26] and then for the general r-uniform case by Gowers [29], Rödl and
Skokan [44, 45] and Nagle, Rödl and Schacht [36]. In these formulations, the no-
tion of how overlapping hyperedges interact is captured by structures known as com-
plexes. The structure of complexes inherent in strong hypergraph regularity would
seem to be necessary in order to define r-CRHs and colored homomorphisms in
order for the existence of a particular induced hypergraph to be determined.

The edit distance problem is, asymptotically, a general case of the Turán prob-
lem. In the context of Turán-type problems, a hypergraph property is monotone if
it is closed under the taking of (not necessarily induced) subgraphs. Therefore, a
monotone property is also hereditary. For a monotone property M , the Turán den-
sity is π(M ) = limsupn→∞ max{|E(G)|/

(n
2

)
: |V (G)|= n,G ∈M }. It is easy to see

that

π(M ) = 1− edM (1).
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The Turán density for most monotone properties is not currently known, even
though a great deal of work has been done on the subject.

In the graph case, it is trivial to derive edM (1) using symmetrization. In addition,
the classification of p-core CRGs established by Marchant and Thomason [31] allow
for a trivial proof of the asymptotic Erdős-Stone-Simonovits result [25, 24].

In Question 4 from Section 8.2, we ask several questions that are related to a
general theory of edit distance in r-uniform hypergraphs.

8.2 Open Problems

We first ask about powers of cycles and the questions left open in Section 5.4.

Question 1 Let H = Forb(Ct
h). What is edH (p) for small values of p, where t +1

divides h? What is edH (p) for small values of h? In particular:

• For H = Forb(Ch), what is edH (p) for even values of h and all values of p?
• For H = Forb(Ch), what is d∗H for all t ≥ 2 and h≥ 2t +1?

Next we consider complete bipartite graphs and some interesting questions from
Section 5.5

Question 2 What is edH (p) for H = Forb(Ks,t)? In particular:

• For H = Forb(Ks,s), is d∗H = 1/(2s−2) if s≥ 7?
• For H = Forb(Ks,s), is p∗H is an interval of positive length if s≥ 7?
• For H = Forb(Ks,t), which values of s and t give that p∗H is an interval of

positive length?

Other metrics on the space of graphs are of interest, as we discussed in Section 6.

Question 3 Let H be a nontrivial hereditary property of graphs.

• For the cut metric d�, is it the case that the function φH , as defined in (13), can
be expressed only in terms of p and of edH (·)?

• For any metric d that is continuous with respect to the edit metric, is it the case
that the function φH , as defined in (13), can be expressed only in terms of p
and of edH (·)?

The question of the edit distance in hypergraphs is wide open, as we discussed in
Section 8.1.

Question 4 Let H be a nontrivial hereditary property of r-uniform hypergraphs.

• Is it the case that edH (p) = infK∈K (H ) gK(p) for all p ∈ [0,1]?
• If H is monotone, is it the case that edH (1) = infK∈K (H ) gK(1)?
• Is there a useful form of generalizations properties do r-linear forms have?
• Can we provide a structural characterization for r-CRHs that are p-core, à la

Theorem 9?
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The cases of H = Forb(K3,3) and H = Forb(K2,t) for t ≥ 9 suggest an infinite
number of CRGs are necessary to define an edit distance function, but only if one
wants to compute it for p arbitrarily close to 0 (or by considering the property H ,
arbitrarily close to 1).

Conjecture 1 Let H be a nontrivial hereditary property. For every ε > 0 there
exists a K ′ = K ′(ε,H ) such that

edH (p) = min
{

gK(p) : K ∈K ′} for all p ∈ (ε,1− ε).

We ask if the behavior we seem to observe for Forb(K3,3) and Forb(K2,t) for t ≥ 9
– that is, that an infinite sequence of CRGs are required to compute the edit distance
function for all values of p – does, in fact, occur.

Question 5 Are there hereditary properties of graphs for which the edit distance
function cannot be determined from the G functions of a finite number of CRGs?

Finally, we conclude with an open problem for the random graph. Recall that
G(n, p) denotes the Erdős-Rényi random graph on n vertices with probability p.

Conjecture 2 (Martin [33]) Fix p0 ∈ (0,1) and let H = Forb(G(n0, p0)). Then

edH (p) = (1+o(1))
2log2 n0

n0
min

{
p

− log2(1− p0)
,

1− p
− log2 p0

}
with probability approaching 1 as n0→ ∞.

The functions that define this bound are of the form p/(χ−1) and (1− p)/(χ−1).
The case of p0 = 1/2 was proved to be true by Alon and Stav [6].

If Conjecture 2 is true, then it implies that p∗H =
log2(1−p0)

log2 p0(1−p0)
, which is only

equal to p0 itself when p0 ∈ {0,1/2,1}. Informally, this implies the counterintuitive
notion that it is harder to remove induced copies of G(n0, p0) from G(n, p∗H ) than
it is to remove them from G(n, p0).

If Conjecture 2 is false, then it implies that the structure of random graphs and
the behavior of editing induced graphs is quite complex and very unexpected.
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13. József Balogh, Béla Bollobás, and David Weinreich, The speed of hereditary properties of
graphs, J. Combin. Theory Ser. B 79 (2000), no. 2, 131–156. MR 1769217 (2001d:05092)

14. , The penultimate rate of growth for graph properties, European J. Combin. 22 (2001),
no. 3, 277–289. MR 1822715 (2002b:05079)
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